#### **STANDARD MODEL RANGE**

| Model       | Flow Capacity | TSS Range  | FOG Limit | Air to       | Flotation Area  | Pump         | Skimmer    | Energy Efficiency | Automation |
|-------------|---------------|------------|-----------|--------------|-----------------|--------------|------------|-------------------|------------|
| C<br>L<br>L | (m/= m)       | (3/8/11)   | (a/gin)   | V/= ::= I-I- | (# III) Sgilbri | Conce (Nav.) | Over (Avv) | (2 HIVINA)        |            |
| DAF-F-Z     | 7             | 700 - 2000 | > 2000    | Variable     | 0.5 - 7.5       | 0.75         | 0.18       | 0.3               | Standard   |
| DAF-F-5     | വ             | 200 - 5000 | < 2000    | Variable     | 1.0 - 2.5       | 1.1          | 0.25       | 0.28              | Standard   |
| DAF-F-10    | 10            | 200 - 5000 | < 2000    | Variable     | 2.0 - 4.0       | 2.2          | 0.37       | 0.26              | Standard   |
| DAF-F-15    | ਹ             | 200 - 2000 | < 2000    | Variable     | 3.0 - 5.5       | င            | 0.55       | 0.25              | Standard   |
| DAF-F-20    | 20            | 200 - 5000 | < 2000    | Variable     | 4.0 - 7.0       | 3.7          | 0.75       | 0.24              | Standard   |
| DAF-F-30    | 30            | 200 - 5000 | < 2000    | Variable     | 6.0 - 10.0      | 5.5          | 1.1        | 0.23              | Standard   |
| DAF-F-40    | 40            | 200 - 5000 | < 2000    | Variable     | 8.0 - 13.0      | 7.5          | 1.5        | 0.22              | Standard   |
| DAF-F-60    | 09            | 200 - 5000 | < 2000    | Variable     | 12.0 - 20.0     | 11           | 2.2        | 0.21              | Standard   |
| DAF-F-80    | 80            | 200 - 5000 | < 2000    | Variable     | 16.0 - 26.0     | 15           | 3          | 0.2               | Standard   |
| DAF-F-90    | 06            | 200 - 5000 | < 2000    | Variable     | 18.0 - 29.0     | 18.5         | 3.7        | 0.19              | Standard   |
| DAF-F-100   | 100           | 200 - 5000 | < 2000    | Variable     | 20.0 - 32.0     | 22           | 4          | 0.18              | Standard   |
| DAF-F-120   | 120           | 200 - 5000 | < 2000    | Variable     | 24.0 - 38.0     | 25           | 5.5        | 0.17              | Standard   |
| DAF-F-140   | 140           | 200 - 5000 | < 2000    | Variable     | 28.0 - 44.0     | 30           | 7.5        | 0.16              | Standard   |
| DAF-F-160   | 160           | 200 - 5000 | < 2000    | Variable     | 32.0 - 50.0     | 37           | 6          | 0.15              | Standard   |
| DAF-F-180   | 180           | 200 - 5000 | < 2000    | Variable     | 36.0 - 56.0     | 45           | 11         | 0.14              | Standard   |

#### WANT TO LEARN MORE?

https://aquaanalytic.ae/

+31 715 69 01 51

## EFFECTIVE AND EFFICIENT INDUSTRIAL WASTE WATER TREATMENT

FlotLife's Dissolved Air Flotation (DAF-F-HDPE) system is designed for the efficient separation of fats, suspended solids, and organic pollutants from wastewater.

### **FlotLife**

#### **Standart specification**

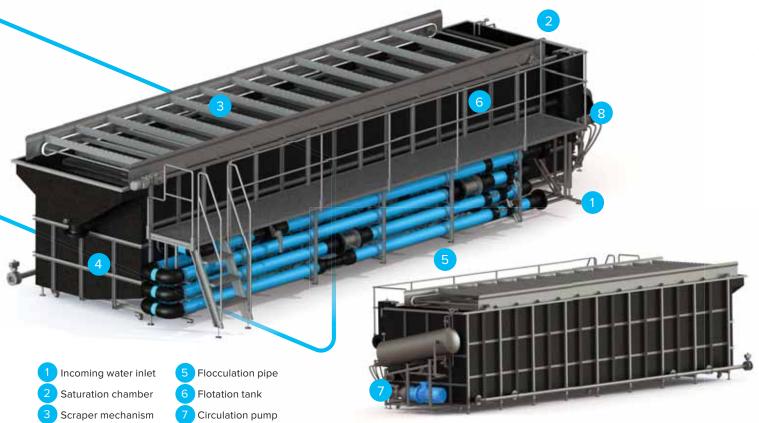
- Adjustable effluent outlet
- Tank body made of HDPE or PP
- Duplex structural support frame
- Pipe flocculator with inline mixer
- Service platform
- Air saturation vessel made of Duplex stainless steel
- Centrifugal pump made of industrial plastic
- Sludge hopper with sludge pump
- Control cabinet PLC





#### **Optional features**

- Cover with ventilation outlet
- Lamella pack An advanced system that integrates inclined plate technology for higher efficiency in sedimentation and solid separation.


# DISSOLVED AIR FLOTATION UNIT DAF-F-HDPE HIGH-DENSITY POLYETHYLENE BODY

That will work for ages in high density salt and chemical environment



Fully assembled Dissolved Air Flotation (DAF) system designed for a flow capacity of 60 m³/h. Equipped with air injection, flotation, and sludge removal systems for efficient wastewater treatment. Pre-tested and ready for installation at the client's site.

With a well-sized air compressor and saturation vessel, the system can achieve a high level of air dissolution, producing fine microbubbles essential for effective solid separation. Standard pump + compressor systems have been used for decades, so they are widely understood by engineers and operators.



#### **ADVANTAGES AND CHARACTERISTICS**

- Recycle-Flow Pressurization Enables the system to operate at higher pressures, minimizing the destruction of floc formed in the process flow, thereby increasing overall system effectiveness.
- Improved Air Saturation System The DAF-F uses 50-70% less recycle flow than conventional DAF systems while introducing the same amount of dissolved air into the flotation tank.
- Efficient DAF Recycle Pump Designed to operate at high pressures, increasing the amount of saturated air by 46% more than traditional centrifugal pumps.
- Optimized Use of Coagulants and Flocculants Supports stronger floc formation, reduces float volumes and moisture content, and allows the system to operate with a much lower air/solids ratio and higher solids loading rate.
- Compact Design With a high loading rate, the DAF-F requires only 15% of the space needed for conventional clarification, making more efficient use of available space.
- Cost-Effective Delivered pre-assembled and pre-tested in our controlled facility, often reducing costs by 50% or more compared to in-situ construction. The DAF-F can also be integrated into pre-engineered systems for even greater savings and faster deployment.

#### **DAF-F** is ideal for:

- New projects
- Existing plant upgrades
- Replacement plants

#### Reduction of pollution achievable by DAF-F

Control unit

Treated water outlet

| Fats                            | 90% |
|---------------------------------|-----|
| Oils                            | 90% |
| Total Suspended Solids (TSS)    | 90% |
| Biochemical Oxygen Demand (BOD) | 65% |
| Chemical Oxygen Demand (COD)    | 65% |

These values represent common industry benchmarks for DAF system performance. However, actual efficiency varies based on wastewater

To determine the precise removal efficiency for each specific case, a jar test should be conducted.



